With the advent of AI comes a new type of computer chip that's going to be used more and more. By now you've probably all heard of the CPU, the GPU, and more recently the NPU. Let's untangle the difference between these different computing units and how to best use them. But first, a history lesson.
(credit : Intel)
First introduced in the 1960s, CPUs (central processing units) are the beating heart of all computers, responsible for performing all basic operations. Designed to be versatile and capable of handling a wide range of instructions and operations, they are ideal for running operating systems, productivity software, and many other general-purpose applications. However, with the advent of the first 3D video games and advanced graphics applications, the limitations of CPUs became apparent. Designed for general-purpose computing, their architecture was not optimized for the massive parallel processing required by graphics-intensive applications and scientific simulations.
However, with the growing demand for massive parallel processing required by graphics-intensive applications and scientific simulations, the limitations of CPUs and math coprocessors became apparent. This led to the development of graphics processing units (GPUs) in the 1990s, which quickly became indispensable and specialized for parallel processing of large amounts of data. GPUs (available as integrated graphics chips or stand-alone graphics cards) are built with hundreds or thousands of small, specialized cores (ALUs: Arithmetic Logic Units) that can perform multiple operations simultaneously, making them ideal for graphics rendering and, more recently, for training and deploying deep learning models.
In the last few years, a new category has emerged called Neural Processing Units (NPUs). While math coprocessors and GPUs have accelerated floating-point calculations and parallel processing of large amounts of data, NPUs are designed to efficiently handle matrix multiplication and addition, which is essential for artificial intelligence (AI) and machine learning (ML) workloads such as image recognition, natural language processing, and machine learning.
In practice, CPUs, GPUs, and NPUs are all essential to the operation of a modern computer, but each is optimized for different types of computation and rendering. Let's break it down.
At the heart of any computing device is the processor, often referred to as the "brain" of the system. It is known for its versatility and general-purpose computing capabilities, thanks to an architecture designed to manage applications and tasks that require complex decision-making.
Strengths
Weaknesses
Originally designed to render graphics in video games, GPUs have changed the game in AI with their unrivaled parallel processing capabilities, such as deep learning and image processing.
Unlike CPUs, GPUs excel at performing thousands of computational tasks simultaneously in parallel, making them essential for training and operating complex neural networks.
Strengths
Weaknesses
(Credit : Intel)
In the quest for AI innovation, a new player has entered the scene: the NPU (Neural Processing Unit). Designed from the ground up to accelerate neural network computations, NPUs are tailor-made to meet the demands of deep learning and AI workloads. NPUs deliver unmatched performance and power efficiency through hardware and software optimization.
Strengths
Weaknesses